

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 4441-4443

Tetrahedron Letters

Stereoselective approach to pentenocins using RCM: synthesis of 6-epi-pentenocin B^{abc}

G. Venkata Ramana and B. Venkateswara Rao*

Organic Division III, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Received 30 January 2006; revised 13 March 2006; accepted 12 April 2006 Available online 12 May 2006

Abstract—The stereoselective synthesis of 6-*epi*-pentenocin B 3 is described using a stereoselective Grignard reaction and ring-closing metathesis (RCM) as the key steps. \bigcirc 2006 Elements 144, All rights received

© 2006 Elsevier Ltd. All rights reserved.

Oxygenated cyclopentenones are important bioactive compounds in nature.¹ Pentenocin A **1** and B **2** were isolated² by Omura and co-workers in 1999 from the culture broth of *Trichoderma hamatum* FO-6903 as an active agent against recombinant human interleukin-1 β converting enzyme (ICE). ICE is also known as caspase-1, a unique cystein protease that cleaves the inactive precursor of IL-1 β into biologically active IL-1 β , a key mediator in the pathogenesis of acute and chronic inflammation.³ The absolute stereochemistry of pentenocin B was determined by Ohira⁴ and Sugahara³ independently, by synthesizing all the possible diastereomers, and was confirmed to be 4*S*,5*R*,6*R* as shown in **2** (Fig. 1).

In continuation of our efforts on the synthesis of biologically active oxygenated cyclopentenones by RCM,⁵ a new approach was developed for the synthesis of the pentenocin skeleton. Herein, we report the synthesis of 6-*epi*-pentenocin B 3^{3,4} using a stereoselective Grignard reaction and RCM as the key steps. 2,3-*O*-Isopropylidene-D-ribose 4 was transformed into the hydroxymethyl compound 5 using a method based on a reported procedure,⁶ $[\alpha]_D^{24}$ –23.086 (*c* 2.35, CHCl₃), lit.:^{6a,b} $[\alpha]_D^{25}$ –26.5 (*c* 2.19, CHCl₃). The primary hydroxyl group in 5 was selectively acetylated with AcCl, DIPEA in DCM at -78 °C to give compound 6 $[\alpha]_D^{24}$ –21.98 (*c* 2.3, CHCl₃).

The anomeric hydroxyl functionality of **6** was protected with TBDPS–Cl to afford silyl ether **7**. Treatment of **7**

with NaOMe (4 equiv) in anhydrous MeOH for a period of 12 h at room temperature yielded **8** $[\alpha]_D^{24} - 17.83$ (*c* 3.2, CHCl₃) as the sole diastereoisomer along with hydroxymethyl compound **5** (Scheme 1).

The structure of **8** was confirmed from its NOE spectral analysis (Fig. 2). Oxidation of alcohol **8** using Swern conditions gave aldehyde **9**, which was allowed to react with methylmagnesium iodide at -78 °C to give the expected alcohol **10** $[\alpha]_D^{24}$ -25.25 (*c* 2.0, CHCl₃) as the major diastereoisomer (9:1 ratio based on ¹H NMR). Based on chelation control (Fig. 3), we assumed that the major diastereoisomer was alcohol **10**.⁷ The alcohol functionality in **10** was protected as the MOM ether **11** using MOM–Cl, DIPEA and TBAI (cat.), and then the TBDPS group was cleaved with TBAF to give lactol **12**. Wittig olefination of **12** yielded diene **13**. Treatment of diene **13** with Grubbs' first generation olefin metathesis catalyst in DCM furnished cyclopentenol **14**. TEMPO oxidation of the alcohol **14** gave the required protected *epi*-pentenocin B⁸ **15** $[\alpha]_D^{24}$ -29.4 (*c* 1.2, CHCl₃). The NMR data was in good agreement with the reported

^{*}IICT Communication Number: 060115.

^{*} Corresponding author. Tel.: +91 40 27160123x2614; fax: +91 40 27160512; e-mail: venky@iict.res.in

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.04.054

Scheme 1. *Reagents and conditions*: (a) (1) CH₂=CHMgBr, THF, -78 °C to rt, 3 h, 75%; (2) NaIO₄, CH₂Cl₂-H₂O (1:1), 0 °C to rt, 2 h, 80%; (3) K₂CO₃, 37% CH₂O, MeOH, 80 °C, 36 h, 85%; (b) Ac₂O, DIPEA, CH₂Cl₂, -78 °C, 1 h, 56%; (c) TBDPS-Cl, imidazole, CH₂Cl₂, 0 °C to rt, 6 h, 73%; (d) NaOMe (4 equiv), MeOH, 0 °C to rt, 12 h, (40% for **8**, 38% for **5**); (e) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C, 3 h; (f) MeMgI, ether, -78 °C, 3 h, (60% for two steps); (g) MOM-Cl, DIPEA, TBAI (0.1 equiv), CH₂Cl₂, 0 °C to rt, 48 h, 81%; (h) TBAF, THF, 0 °C to rt, 4 h, 88%; (i) CH₃PPh₃+I⁻, 'BuOK, 18-crown-6, THF, 0 °C to rt, 24 h, 34%; (j) Grubbs' first-generation olefin metathesis catalyst (0.1 equiv), CH₂Cl₂, rt, 24 h, 79%; (k) Tempo free radical (cat.), KBr, NaOCl, NaHCO₃, EtOAc-toluene-water (1:1:0.2), 0 °C, 1 h, 65%; (l) 90% TFA, 0 °C, 2 h, 30%.

Figure 2.

Figure 3. Transition state leading to the major diastereoisomer of 10.

data for (+/-)-15.³ Removal of the MOM and acetonide protecting groups in 15 with 90% TFA³ completed a stereoselective synthesis of 6-*epi*-pentenocin B 3, whose spectral⁹ and physical data were in agreement with the reported values, $[\alpha]_D^{23}$ +84.15 (*c* 0.16, MeOH) lit.:⁴ $[\alpha]_D$ -89 (*c* 0.42, MeOH for its *C*-6 enantiomer).

In summary, a new approach for the construction of the pentenocin skeleton has been utilized for the synthesis of 6-*epi*-pentenocin B 3.

Acknowledgements

G.V.R. thanks the CSIR, New Delhi, for a research fellowship (SRF). We also thank IFCPAR for their financial support, Dr. J. S. Yadav and Dr. A. C. Kunwar for their support and encouragement.

References and notes

- (a) Bickley, J. F.; Roberts, S. M.; Santoro, M. G.; Snape, T. J. *Tetrahedron* 2004, 60, 2569–2576; (b) Tilo, L.; Jurgen, S.; Andrea, P.; Norbert, A.; Ludger, W. *Phytochem.* 2004, 65, 1061–1071; (c) Masami, I.; Shinji, T.; Jun'ichi, K. *Tetrahedron Lett.* 1993, 34, 3749–3750.
- Matsumoto, T.; Ishiyama, A.; Yamaguchi, Y.; Masuma, R.; Ui, H.; Shiomi, K.; Yamada, H.; Omura, S. J. Antibiot. 1999, 52, 754–757.
- Sugahara, T.; Fukuda, H.; Iwabuchi, Y. J. Org. Chem. 2004, 69, 1744–1747.
- Ohira, S.; Fujiwara, H.; Maeda, K.; Habara, M.; Sakaedani, N.; Akiyama, M.; Kuboki, A. *Tetrahedron Lett.* 2004, 45, 1639–1641.
- Ramana, G. V.; Rao, B. V. Tetrahedron Lett. 2003, 44, 5103–5105.
- (a) Jeong, A. L.; Hyung, R. M.; Hea, O. K.; Kyung, R. K.; Kang, M. L.; Bum, T. K.; Ki, J. H.; Moon, W. C.; Kenneth, A. J.; Jeong, L. S. J. Org. Chem. 2005, 70, 5006– 5013; (b) Hyung, R. M.; Hea, O. K.; Kang, M. L.; Moon, W. C.; Joong, H. K.; Jeong, L. S. Org. Lett. 2002, 4, 3501– 3503; (c) Ho, P.-T. Can. J. Chem. 1979, 57, 381–383; (d) Ho, P.-T. Tetrahedron Lett. 1978, 19, 1623–1626; (e) Shing, T. K. M.; Elsey, D. A.; Gillhouley, J. G. J. Chem. Soc., Chem. Commun. 1989, 1280–1282.

4443

- 7. Attempts to separate and confirm the stereochemistry at the newly created hydroxyl centre by preparing Mosher derivatives proved unsuccessful.
- 8. Compound (-)-16, which is a protected form of (+)-pentenocin B 2, is also reported³ whose rotation and ¹H and ¹³C NMR data were different from 15.

9. Spectral data for 3: ¹H NMR (300 MHz, DMSO-d₆): δ 1.15 (d, 3H, J = 6.8 Hz), 3.67 (quint, 1H, J = 6.0 Hz), 3.91 (d, 1H, J = 6.8 Hz), 4.82 (s, 1H), 4.84 (d, 1H, J = 5.3 Hz), 5.45 (d, 1H, J = 6.8 Hz), 6.22 (d, 1H, J = 6.0 Hz), 7.60 (d, 1H, J = 6.0 Hz). ¹³C NMR (75 MHz, DMSO-d₆): δ 207.6, 162.2, 133.0, 79.1, 72.7, 68.8, 17.6. ESI MS: 159 (M⁺+1).